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Abstract

A general approach to knowledge transfer is introduced in
which an agent controlled by a neural network adapts how it
reuses existing networks as it learns in a new domain. Net-
works trained for a new domain can improve their perfor-
mance by routing activation selectively through previously
learned neural structure, regardless of how or for what it was
learned. A neuroevolution implementation of this approach
is presented with application to high-dimensional sequen-
tial decision-making domains. This approach is more gen-
eral than previous approaches to neural transfer for reinforce-
ment learning. It is domain-agnostic and requires no prior as-
sumptions about the nature of task relatedness or mappings.
The method is analyzed in a stochastic version of the Arcade
Learning Environment, demonstrating that it improves per-
formance in some of the more complex Atari 2600 games,
and that the success of transfer can be predicted based on a
high-level characterization of game dynamics.

Introduction

The ability to apply available previously learned knowledge
to new tasks is a hallmark of general intelligence. Trans-
fer learning is the process of reusing knowledge from pre-
viously learned source tasks to bootstrap learning of tar-
get tasks. In long-range sequential control domains, such
as robotics and video game-playing, transfer is particularly
important, because previous experience can help agents ex-
plore new environments efficiently (Taylor and Stone 2009;
Konidaris, Scheidwasser, and Barto 2012). Knowledge ac-
quired during previous tasks also contains information about
an agent’s domain-independent decision making and learn-
ing dynamics, and thus can be useful even if the domains
seem unrelated.

Existing approaches to transfer learning in such domains
have demonstrated successful transfer of varying kinds of
knowledge, but they make two fundamental assumptions
that restrict their generality: (1) some sort of a priori human-
defined understanding of how tasks are related, and (2) sep-
arability of knowledge extraction and target learning. The
first assumption limits how well the approach can be ap-
plied by restricting its use only to cases where the agent
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has been provided with this additional relational knowl-
edge, or, if it can be learned (Talvitie and Singh 2007;
Taylor, Kuhlmann, and Stone 2008; Ammar et al. 2015b),
cases where task mappings are useful. The second assump-
tion implies that it is known what knowledge will be useful
and how it should be incorporated before learning on the tar-
get task begins, preventing the agent from adapting the way
it uses source knowledge as it gains information about the
target domain.

General ReUse of Static Modules (GRUSM) is proposed
in this paper as a general neural network approach to trans-
fer learning that avoids both of these assumptions. GRUSM
augments the learning process to allow learning networks
to route through existing neural modules (source networks)
selectively as they simultaneously develop new structure
for the target task. Unlike previous work, which has dealt
with mapping task variables between source and target,
GRUSM is domain-independent, in that no knowledge about
the structure of the source domain or even knowledge about
where the network came from is required for it to be reused.
Instead of using mappings between task-spaces to facilitate
transfer, it searches directly for mappings in the solution
space, that is, connections between existing source networks
and the target network. This approach is motivated by stud-
ies that have shown in both naturally occurring complex net-
works (Milo et al. 2002) and in artificial neural networks
(Swarup and Ray 2006) that certain network structures re-
peat and can be useful across domains, without any context
for how exactly this structure should be used. This work is
further motivated by the idea that neural resources in the hu-
man brain are reused for countless purposes in varying com-
plex ways (Anderson 2010).

In this paper, an implementation of GRUSM based on the
Enforced Subpopulations (ESP) neuroevolution framework
(Gomez and Miikkulainen 1997; 1999) is presented. The
approach is validated on the stochastic Atari 2600 general
game playing platform, finding that GRUSM-ESP improves
learning for more complex target games, and that these im-
provements may be predicted based on domain complexity
features. This result demonstrates that even without tradi-
tional transfer learning assumptions, successful knowledge
transfer via general reuse of existing neural modules is pos-
sible and useful for long-range sequential control tasks. In
principle, this approach scales naturally to transfer from an
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arbitrary number of source tasks, which suggests that in the
future it may be possible to build GRUSM agents that ac-
cumulate and reuse knowledge throughout their lifetimes
across a variety of diverse domains.

Background

Transfer learning encompasses machine learning techniques
that involve reusing existing source knowledge in a differ-
ent target task or domain. A domain is an environment in
which learning takes place, characterized by the input and
output space; a task is a particular function from input to
output to be learned (Pan and Yang 2010). In sequential-
decision domains, a task is characterized by the values of
sensory-action sequences corresponding to the pursuit of a
given goal. A taxonomy of types of knowledge that may be
transferred was also enumerated by Pan and Yang. Because
the GRUSM approach reuses the structure of existing neural
networks, it falls under feature representation transfer.

Transfer Learning for RL

Transfer learning for sequential decision-making domains
has been studied extensively within the reinforcement learn-
ing (RL) paradigm (Taylor and Stone 2009). Reinforcement
learning domains are often formulated as Markov decision
processes (MDPs) in which the state space comprises all
possible observations, and the probability of an observation
depends only on the previous observation and action taken
by a learning agent. However, many real world RL domains
are non-Markovian, including many Atari 2600 games, for
example, the velocity of a moving object cannot be deter-
mined by looking at a single frame.

The Atari 2600 platform also supports a wide variety
of games. Existing RL approaches to transfer differ on the
types of differences allowed between source and target task.
Some approaches that are general with respect to the kind of
knowledge that can be transferred are restricted in that they
require a consistent agent-space (Konidaris, Scheidwasser,
and Barto 2012), or an a priori specification of inter-task
mappings defining relationships between source and target
state and action variables (Brys et al. 2015). Existing ap-
proaches to transfer learning that encode policies as neural
networks require such a specification (Taylor, Whiteson, and
Stone 2007; Verbancsics and Stanley 2010). On the other
hand, existing modular neuroevolution approaches that are
more general with respect to connectivity (Reisinger, Stan-
ley, and Miikkulainen 2004; Khare et al. 2005) have not been
applied to cross-domain transfer.

Some of the most general existing approaches to trans-
fer for RL automatically learn task mappings, so they need
not be provided beforehand. These approaches are general
enough to apply to any reinforcement learning domains,
but initial approaches (Taylor, Kuhlmann, and Stone 2008;
Talvitie and Singh 2007) were intractable for high dimen-
sional state and action spaces due to combinatorial blowup
in the number of possible mappings. However, recent ap-
proaches in policy gradient RL (Ammar et al. 2015b; 2015a)
can both tractably learn mappings and be applied across di-
verse domains. These approaches have been successful in

continuous control domains, but it is unclear how they would
scale to domains with many discretely-valued features such
as Atari. Also, the above approaches assume MDP environ-
ments, whereas GRUSM can use recurrent neural networks
to extend to POMDPs.

General Neural Structure Transfer

There are existing algorithms similar to GRUSM in that they
make it possible to reuse existing neural structure. They can
apply to a wide range of domains and tasks in that they auto-
matically select source knowledge and avoid inter-task map-
pings. For example, Shultz and Rivest (2001) developed a
technique to build increasingly complex networks by insert-
ing source networks chosen by how much they reduce error.
This technique is only applicable to supervised learning, be-
cause the source selection depends heavily on an immediate
error calculation. Also, connectivity between source and tar-
get networks is limited to the input and output layer of the
source. As another example, Swarup and Ray (2006) intro-
duced an approach that creates sparse networks out of primi-
tives, or commonly used sub-networks, mined from a library
of source networks. This subgraph mining approach depends
on a computationally expensive graph mining algorithm, and
tends to favor exploitation over innovation and small primi-
tives rather than larger networks as sources.

The GRUSM approach is more general in that it can be
applied to unsupervised and reinforcement learning tasks,
makes few a priori assumptions about what kind of sources
and mappings should work best, and is able to develop mem-
ory via recurrent connections. Although an evolutionary ap-
proach is developed in this paper, GRUSM should be exten-
sible to any neural network-based learning algorithm.

Approach

This section introduces the general idea behind GRUSM,
provides an overview of the ESP neuroevolution framework,
and describe the particular implementation: GRUSM-ESP.

General ReUse of Static Modules (GRUSM)

The underlying idea is that an agent learning a neural net-
work for a target task can reuse knowledge selectively from
existing neural modules (source networks) while simultane-
ously developing new structure unique to a target task. This
approach attempts to balance reuse and innovation in an in-
tegrated architecture. Both source networks and new hidden
nodes are termed recruits. Recruits are added to the target
network during the learning process. Recruits are incorpo-
rated adaptively into the target network as it learns connec-
tion parameters from the target to the recruit and from the re-
cruit to the target. All internal structure of source networks is
frozen to allow learning of connection parameters to remain
consistent across recruits. This mechanism forces the target
network to transfer learned knowledge, rather than simply
overwrite it. Connections to and from source networks can,
in the most general case, connect to any nodes in the source
and target, minimizing assumptions about what knowledge
will be useful.
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A GRUSM network is a 3-tuple G = (M,S, T ) where
M is a traditional neural network (feedforward or recur-
rent) containing the new nodes and connections unique to
the target task, with input and output nodes corresponding
to inputs and outputs defined by the target domain; S is a
(possibly empty) set of pointers to recruited source networks
S1, ...,Sk; and T is a set of weighted transfer connections
between nodes in M and nodes in source networks, that is,
for any connection ((u, v), w) ∈ T , (u ∈ M∧v ∈ Si)∨(u ∈
Si ∧ v ∈ M) for some 0 ≤ i ≤ k. This construction strictly
extends traditional neural networks so that each Si can be a
traditional neural network or a GRUSM network of its own.
When G is evaluated, only the network induced by directed
paths from inputs of M to outputs of M , including those
which pass through some Si via connections in T is evalu-
ated. During each evaluation of G, all recruited source net-
work inputs are fixed at 0, since the agent is concerned only
with performing the current target task. The parameters to
be learned are the usual parameters of M , along with the
contents of S and T . The internal parameters of each Si are
frozen in that they cannot be rewritten through G.

The motivation for this architecture is that if the solu-
tion to a source task contains any information relevant to
solving a target task, then the neural network constructed
for the source task will contain some structure (subnetwork
or module) that will be useful for a target network. This
has been previously observed in naturally occurring com-
plex networks (Milo et al. 2002), as well as cross-domain
artificial neural networks (Swarup and Ray 2006). Unlike
the subgraph-mining approach to neural structure transfer
(Swarup and Ray 2006), this general formalism makes no
assumptions as to what subnetworks actually will be useful.
One interpretation is that a lifelong learning agent maintains
a system of interconnected neural modules that it can po-
tentially reuse at any time for a new task. Even if existing
modules are unlabeled, they may still be useful, due to the
fact that they contain knowledge of how the agent can suc-
cessfully learn. Furthermore, advances in reservoir comput-
ing (Lukoševičius and Jaeger 2009) have demonstrated the
power of using large amounts of frozen neural structure to
facilitate learning of complex and chaotic tasks.

The above formalism is general enough to allow for an
arbitrary number of source networks and arbitrary connec-
tivity between source and target. In this paper, to validate
the approach and simplify analysis, at most one source net-
work is used at a time and only connections from target input
to source hidden layer and source output layer to target out-
put are permitted. By not allowing target input to connect to
source input, this restriction avoids high-dimensional trans-
formations between domain-specific sensor substrates, and
more intuitively captures the domain-agnostic goals of the
approach, differentiating the approach from previous meth-
ods that have used direct mappings between sensor spaces.
This restriction is sufficient to show that the implementa-
tion can reuse hidden source features successfully, and it is
possible to analyze the cases in which transfer is most use-
ful. Future refinements are discussed in the Discussion and
Future Work section. The current implementation, described
below, is a neuroevolution approach based on ESP.

Enforced Subpopulations (ESP)

Enforced Sub-Populations (ESP; Gomez and Miikkulainen
1997; 1999) is a neuroevolution technique in which differ-
ent components of a neural network are evolved in separate
subpopulations rather than evolving the whole network in a
single population. ESP has been shown to perform well in a
variety of reinforcement learning domains, and has shown
promise in extending to POMDP environments, in which
use of recurrent connections for memory is critical (Gomez
and Miikkulainen 1999; Gomez and Schmidhuber 2005;
Schmidhuber et al. 2007). In traditional ESP, there is a sin-
gle hidden layer, each neuron of which is evolved in its own
subpopulation. Recombination occurs only between mem-
bers of the same subpopulation, and mutants in a subpopu-
lation derive only from members of that subpopulation. The
genome of each individual in a subpopulation is a vector
of weights corresponding to the weights of connections to
and from that neuron, including node bias. In each genera-
tion, networks to be evaluated are randomly constructed by
inserting one neuron from each subpopulation. Each indi-
vidual that participated in the network receives the fitness
achieved by that network.

When fitness converges, i.e., does not improve over
several consecutive generations, ESP makes use of burst
phases. In initial burst phases each subpopulation is repop-
ulated by mutations of the single best neuron ever occur-
ing in that subpopulation, so that it reverts to searching a
δ-neighborhood around the best solution found so far. If a
second consecutive burst phase is reached, i.e., no improve-
ments were made since the previous burst phase, a new neu-
ron with a new subpopulation may be added (Gomez 2003).

GRUSM-ESP

The idea of enforced sub-populations is extended to trans-
fer learning via GRUSM networks. For each reused source
network Si, the transfer connections in T between Si and M
evolve in a distinct subpopulation. At the same time new hid-
den nodes can be added to M ; they evolve within their own
subpopulations in the manner of standard ESP. In this way,
the integrated evolutionary process simultaneously searches
the space for how to reuse each potential source network
and how to innovate with each new node. The GRUSM-
ESP architecture (Figure 1) is composed of the following
elements: (1) A pool of potential source networks. In the ex-
periments in this paper, each target network reuses at most
one source at a time; (2) Transfer genomes encoding the
weights of cross-network connections between source and
target. Each potential source network in the pool has its own
subpopulation for evolving transfer genomes between it and
the target network. Each connection in T is contained in
some transfer genome. In our experiments, the transfer con-
nections included are those such that the target’s inputs are
fully connected to the source’s hidden layer, and the source’s
outputs are fully connected into the target’s outputs; (3) A
burst mechanism that determines when innovation is neces-
sary based on a recent history of performance improvement.
New hidden recruits (source networks when available, and
single nodes otherwise) added during the burst phase evolve
within their own subpopulations as in standard ESP.
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Figure 1: The GRUSM-ESP architecture, showing the bal-
ance between reused and new structure. In this example, the
target network has three recruits: one source network, and
two single nodes. Each bold edge between target network
nodes and source network recruit indicate connections to
multiple source nodes. The genome in each subpopulation
encodes weight information for the connections from and to
the corresponding recruit.

All hidden and output neurons use a hyperbolic tangent
activation function. Networks include a single hidden layer,
and include recurrent self loops on hidden nodes; they are
otherwise feedforward. The details of the genetic algorithm
in our implementation used to evolve each subpopulation
mirror those described by Gomez (2003). This algorithm has
been shown to work well within the ESP framework, though
any suitable evolutionary algorithm could potentially be sub-
stituted in its place. (Preliminary experiments using this ap-
proach were discussed in Braylan et al. (2015b).)

Experiments

GRUSM-ESP was evaluated in a stochastic version of the
Atari 2600 general video game-playing platform using the
Arcade Learning Environment simulator (ALE; Bellemare
et al. 2013). Atari 2600 is currently a very popular plat-
form, because it challenges modern approaches, contains
non-markovian games, and entertained a generation of hu-
man video game players, who would regularly reuse knowl-
edge gained from previous games when playing new games.
To make the simulator more closely resemble the human
game-playing experience, the ε-repeat action approach as
suggested by Hausknecht and Stone (2015) is used in this
paper to make the environment stochastic; in this manner,
like human players, the algorithm cannot as easily find loop-
holes in the deterministic nature of the simulator. The rec-
ommended ε = 0.251 is used. Note that the vast majority of
previously published Atari 2600 results are in the determin-
istic setting; we are unaware of any existing scores that have
been published in the ε-repeat setting.

Agents were trained to play eight games: Pong, Break-
out, Asterix, Bowling, Freeway, Boxing, Space Invaders,

1https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev

and Seaquest. Neuroevolution techniques are competitive in
the Atari 2600 platform (Hausknecht et al. 2013), and ESP in
particular has yielded state-of-the-art performance for sev-
eral games (Braylan et al. 2015a). Three GRUSM-ESP con-
ditions are evaluated: scratch, transfer, and random. In
the scratch condition, networks are trained from scratch
on a game using standard ESP (GRUSM-ESP with S = ∅).
In the transfer condition, each scratch network is reused
as a source network in training new GRUSM networks for
different target games. In the random control condition, ran-
dom networks are initialized and reused as source networks.
Such networks contain on average the same number of pa-
rameters as fully-trained scratch networks.

Each run lasted 200 generations with 100 evaluations per
generation. Since the environment is stochastic, each evalu-
ation consists of five independent trials of individual i play-
ing game g, and the resulting score s(i, g) is the average of
the scores across these trials. The score of an evolutionary
run at a given generation is the highest s(i, g) achieved by
an individual by that generation. A total of 333 runs were
run split across all possible setups. Evolutionary parameters
were selected based on their success with standard ESP.

To interface with ALE, the output layer of each network
consists of a 3x3 substrate representing the nine directional
movements of the Atari joystick in addition to a single
node representing the Fire button. The input layer consisted
of a series of object representations manually generated
as previously described by Hausknecht et al. (2013). The
location of each object on the screen was represented in an
8 × 10 input substrate corresponding to the object’s class.
The numbers of object classes varied between one and
four. Although object representations were used in these
experiments, pixel-level vision could also be learned from
scratch below the neuroevolution process, e.g., via convolu-
tional networks as was done by Koutník, Schmidhuber, and
Gomez (2014).

Domain Characterization Understanding when transfer
will be useful is important for any transfer learning ap-
proach. In many cases, attempting transfer can impede learn-
ing, leading to negative transfer, when an approach is not
able to successfully adapt knowledge from the source to
the target domain. Negative transfer is a serious concern for
many practitioners (Taylor and Stone 2009; Pan and Yang
2010). To help understand when GRUSM-ESP should be
applied, it is useful to consider the diverse array of games
within a unified descriptive framework. Biological neural
reuse is generally thought to be most useful in transferring
knowledge from simple behaviors to more complex, and the
vast majority of previous computational approaches do ex-
actly that. Thus, the characterization of games in this paper
is grounded by a sense of relative complexity.

Each game can be characterized by generic binary
features that determine what successful game play requires:
(1) horizontal movement (joystick left/right), (2) vertical
movement (joystick up/down), (3) shooting (fire button);
(4) delayed rewards; and (5) long-term planning. Intuitively,
more complex games will include more of these features. A
partial ordering of games by complexity defined by these
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asterix
bowling
freeway
boxing
s. invaders
seaquest

v = vertical movement
h = horizontal movement
s = shooting
d = delayed rewards
p = long-term planning
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Figure 2: (left) Feature representation for each game, and
(right) games partially-ordered by feature inclusion: every
path from none to g contains along its edges each complexity
feature of g exactly once, showing how games are related
across the feature space. The existence of such a hierarchy
motivates the use of atari for transfer.

features is shown in Figure 2. The assignment of features
(1), (2) and (3) is completely defined based on game
interface (Bellemare et al. 2013). Freeway and Seaquest
are said to have delayed rewards because a high score
can only be achieved by long sequences of rewardless
behavior. Only Space Invaders and Seaquest were deemed
to require long-term planning (Mnih et al. 2015), since
the long-range dynamics of these games penalize reflexive
strategies, and as such, agents in these games can perform
well with a low frequency decision-making (Braylan et al.
2015a). In addition to being intuitive, these features are
validated below based on how well they characterize games
by complexity and how well they predict successful transfer.

Analysis Methods There are many possible metrics for
evaluating success of transfer, depending on what kind of
transfer is desired or expected. Learning curves are irregu-
lar across different games, as illustrated in Figure 3, which
makes it difficult to choose a single metric that makes sense
across all source-target pairs. Thus, the analysis is focused
on a broad notion of transfer effectiveness (TE), which ag-
gregates metrics such as jumpstart and max overall score,
with a weighted approximation of area under the curve (Tay-
lor and Stone 2009). Success of a setup is defined as the
sum of the average score of that setup at a series of non-
uniformly-spaced generations: [1, 10, 50, 100, 200]. This se-
ries favors early performance over later performance, as in
general, in the long run, training from transfer and scratch
should converge, as scratch eventually relearns everything
that was effectively transferred. Then, the TE of a setup is
its success minus the success of the control on the target
game, the difference normalized by the size of the range of
max scores achieved across all runs for that game, in order
to draw comparison across games.

The first hypothesis is that transfer would outperform
scratch in some setups, and that those setups could be pre-
dicted (i.e., they are not coincidental). However, any out-
performance of transfer over scratch could be due to a

Figure 3: Raw mean score learning curves by generation for
each target game aggregated over transfer (solid), random

(dashed), and scratch (dotted) setups. The diversity of these
learning curves shows the difficulty in comparing perfor-
mance across games.

larger number of network parameters. Therefore, as a sec-
ond hypothesis, random setups were used as a control for
the number of parameters, to test how transfer could pre-
dictably outperform random. We postulated and tested sev-
eral useful indicators for predicting the outperformance of
transfer, i.e., TE: (1) feature similarity: count of features
that are 1 for both source and target); (2) source feature
complexity: feature count of source game; (3) target feature
complexity: feature count of target game; (4) source training
complexity: source game average time to threshold; (5) tar-
get training complexity: target game average time to thresh-
old, where the threshold for each game is the minimum max
score achieved across all scratch runs for that game, and
time to threshold is the average number of generations to
reach this threshold.

To predict TE, a linear regression model was trained in
a leave-one-out cross-validation analysis. For each possible
source-target pair (s, t), the model was trained on all pairs
(s′, t′ �= t) with TE as the dependent variable and the five
indicators as the independent variables. Subsequently, the
trained model was used to predict the TE of (s, t). Corre-
lation between the actual and predicted TE across all test
pairs was used to gauge the predictability of TE. This exper-
iment was conducted identically for both transfer versus
scratch and transfer versus random conditions.

Results For both hypotheses, the indicator-based model
proved to be a statistically significant predictor of transfer
effectiveness in the test data: correlation R = 0.40 and p-
value < 0.0025 for transfer versus scratch; correla-
tion R = 0.53 and p-value < 10−7 for transfer versus
random (Figure 4). The strongest indicators for transfer
versus scratch were target feature complexity and target
training complexity, and for transfer versus random the
strongest indicator was target feature complexity.

The fact that more complex games are more successful
targets should not be surprising. As noted before, in most
transfer learning scenarios, only simple-to-complex trans-
fer is considered. The ability to predict when GRUSM-ESP
will work is an important tool when applying this method to
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Figure 4: Predicted vs. actual transfer effectiveness with re-
spect to scratch (left) and random (right). Both predictors
have a significant correlation between predicated and actual
transfer effectiveness.

game scratch random transfer human DQN
pong 0.0 21.0 10.0ast 9.3 18.9
breakout 31.0 35.0 30.3box 31.8 401.2
asterix 2800 3216.7 3355bow 8503 6012
bowling 249.3 265.0 265.0fr 154.8 42.4
freeway 31.4 31.5 32.2brk 29.6 30.3
boxing 93.9 92.7 95.0sea 4.3 71.8
s. invad. 1438.0 1407.5 1655.0po 1652 1976
seaquest 466.0 460.0 975.0sp 20182 5286

Table 1: For each game, average scores for scratch, random,
and transfer from best source (subscripted). Interestingly,
the best source for each target is unique. We also show hu-
man and DQN scores (Mnih et al. 2015). Note: DQN uses
deterministic ALE, so the most apt external comparison here
may be to humans, who cannot deterministically optimize
trajectories at the frame level.

larger problems, and it is encouraging that the predictive in-
dicator coincides with the ‘common sense’ expectations of
transfer effectiveness in the current experiments. TE for all
source-target pairs is visualized in Figure 5. Also, although
it is difficult to compare to the deterministic Atari 2600 do-
main, Table 1 provides a comparison of GRUSM-ESP to re-
cent results in that domain for context (Mnih et al. 2015).

Discussion and Future Work

The results show that GRUSM-ESP (an evolutionary algo-
rithm for general transfer of neural network structure) can
improve learning in Atari game playing by reusing previ-
ously developed knowledge. They also make it possible to
characterize the conditions under which transfer may be use-
ful. More specifically, the improvement in learning perfor-
mance in the target domain depends heavily on the com-
plexity of the target domain. The effectiveness of trans-
fer in complex games aligns with the common-sense no-
tion of hierarchical knowledge representation, as argued
previously in transfer learning (Konidaris, Scheidwasser,
and Barto 2012) as well as in biology (Anderson 2010;
Milo et al. 2002). It will be interesting to investigate whether
the same principles extend to other general video game play-
ing platforms, such as VGDL (Perez et al. 2015; Schaul
2013). Such work should help understand how subsymbolic
knowledge can be recycled indefinitely across diverse do-
mains.

asterix

space invaders

pong

seaquest

freeway

boxing breakout bowling

asterix

space invaders

seaquest

freeway

boxing

breakout

bowling

pong

Figure 5: Transferability graphs over all pairs of tasks with
respect to scratch (top) and random (bottom) illustrating the
target-centric clustering of successful source-target pairs.
Each graph includes a directed edge from g1 to g2 ⇐⇒
the TE (see Analysis) for g2 reusing g1 is positive.

Transfer is likely inefficient in simpler games due to
the effort involved in finding the necessary connections for
reusing knowledge from a given source network effectively,
in which case it is more efficient to relearn from scratch.
For particular low-complexity games, it can also be seen
that random consistently outperforms both scratch and
transfer (e.g., pong). The initial flexibility of untrained
parameters in the random condition may explain this result.
Unfreezing reused networks, and allowing them to change
with a low learning rate may help close this gap.

Some transfer pairs do not consistently outperform
training from scratch or random, indicating negative
transfer. This highlights the importance of source and target
selection in transfer learning. These results have taken a step
towards answering the target-selection problem: What kinds
of games make good targets for transfer? More data across
many more games is required to answer the source-selection
problem: For a given game, what sources should be used?
A next step will involve pooling multiple candidate sources
and testing GRUSM-ESP’s ability to exploit the most useful
structure available.

Despite negative transfer in some of the setups, the tech-
nique of training a classifier to predict transfer success is
shown to be a useful approach for helping decide when to
transfer: given some space of complex disparate domains,
try transfer with a subset of source-target pairs, and use the
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results to build a classifier to inform when to attempt trans-
fer in the future. In this paper, domain-characterization fea-
tures were provided, but domain-agnostic features could be
learned from analysis of the networks and/or learning pro-
cess; this is an interesting avenue for future work.

Another area of future work involves increasing the flex-
ibility in the combined architecture by (1) relaxing the re-
quirement for all transfer connections to be input-to-hidden
and output-to-output, (2) allowing deeper architectures for
the source and target networks, and (3) including multiple
source networks with adaptive connectivity to each. These
extensions will promote reuse of subnetworks of varying
depth, along with flexible positioning and combination of
modules. However, for GRUSM-ESP, as networks become
large and plentiful, maintaining full connectivity between
layers will become intractable, and it will be necessary to
enforcing sparsity. GRUSM-ESP can also be extended to in-
clude LSTM units, e.g., as by Schmidhuber et al. (2007),
when deep memory is a primary concern.

Conclusion

This paper introduced an approach for general transfer
learning using neural networks. The approach minimizes a
priori assumptions of task relatedness and enables a flexible
approach to adaptive learning across many domains. In a
stochastic version of the Atari 2600 general video game-
playing platform, a specific implementation developed in
this paper as GRUSM-ESP can boost learning by reusing
neural structure across disparate domains. The success
of transfer is shown to correlate with intuitive notions of
domain complexity. These results indicate the potential
for general neural reuse to predictably assist agents in
increasingly complex environments.
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